an ongoing artistic journal in digitally published zines
allison parrish
compasses
north
goerth earthe
west eaurth east
waust seauet
south
spring
swinter spumne
winter swinge summer
wanter faule
fall
noon
nein threwe
nine thein three
knich thike
six
second
third searced
third cheared first
thore foerse
home
wands
tendas quanz
pentacles cuends cups
senticels suers
swords
clubs
dlibs chalbs
diamonds saileds hearts
saimeds shards
spades
earth
warth ear
water hair air
wair feir
fire
guanine
thinein cyantine
thymine thainesine cytosine
teanene aitenine
adenine
sanguine
shagniting calioni
phlegmatic chalentic choleric
phellantic calartic
melancholic
justice
	teaperas prudess
	temperance phoertised prudence
	poerpeteres proudited
	fortitude
mercury
marciar vercious
mars merche venus
arth eanth
earth
jupiter
kepten seuterner
neptune ceuterne saturn
eurtuness caurtines
uranus
leonardo
reanard lonatelo
raphael lainalet donatello
machellen michanello
michelangelo
gabriel

garfield machrill

raphael archele michael

arsel eischell

azrael
google
augle agolzen
apple aasbol amazon
pacebul aace-bown
facebook
gryffindor
slytherin ghiffinfer
shilferton hufflepuff
sriterlan harfalf-uf
ravenclaw
cyan
blaich maughen
black maighta magenta
balke maelet
yellow
addition
edision adtician
division ut-tician subtraction
dulifician multrication
multiplication
I trained a machine learning model with two parts: a "speller," which spells words based on how they sound, and a "sounder-out," which sounds out words based on how they're spelled. In the process of sounding out a word, the "sounder-out" produces a fixed-length numerical vector, known as a "hidden state," which is essentially a condensed representation of a word's phonetics. The "speller" can then use the phonetic information contained in this hidden state to produce a plausible spelling of the word. The hidden state, like any other numerical vector, can be modified: translated, multiplied, blurred, averaged.

Each of the poems collected here results from a computer program I wrote that performs the following steps: (1) use the "sounder-out" to find the hidden state for four words, drawn from a hand-authored list (these are the words on the "points" of each poem); (2) find the vector halfway between the hidden state vectors for each pair of "point" words, and predict a plausible spelling for these halfway vectors with the "speller"; (3) find the vector of the midpoint of all eight vectors produced in (1) and (2), and likewise predict a plausible spelling for this vector.

The words from steps (1) and (2) are then programmatically arranged in the form of a compass rose. The word resulting from step (3) is placed in the middle.

dectextualize.com